RUIS for Unity 1.10

- Tuukka Takala technical design, implementation
- Heikki Heiskanen implementation
- Mikael Matveinen implementation

For updates and other information, see http://ruisystem.net/
For help, visit our forum: https://forum.ruisystem.net/

Introduction

RUIS (Reality-based User Interface System) gives hobbyists and seasoned developers an easy
access to the state-of-the-art interaction devices, so they can bring their innovations into the
field of virtual reality and motion controlled applications. Currently RUIS for Unity includes a
versatile display manager for handling several display devices, and supports the use of Kinect
v1, Kinect v2, HTC Vive, Oculus Rift and PlayStation Move together in the same coordinate
system. This means that avatars controlled by Kinect can interact with virtual tools represented
by OpenVR controllers; a player can see and control the full body of their avatar, and grab a
Vive controller that is rendered as a Swiss army knife within the application for example.

Quickstart

Try example scenes at \RUISunity\Assets\RUIS\Examples\ -directory. You can develop and
test your own motion controlled applications even if you have only a mouse and keyboard,
because in RUIS they can emulate 3D input devices. If you want to use HTC Vive or Oculus Rift
together with Kinect v1 or v2, open the OpenVRExample scene and read the “Using multiple
motion trackers with a common coordinate systems” section of this document. Vive developers
should note that the term ‘OpenVR’ is used to substitute ‘Vive’ throughout this
document, RUIS variable names, and tooltip help.

Most RUIS scripts have extensive tooltip information, so hover the mouse cursor over any
variables of RUIS components in Unity Editor’s Inspector tab to learn about RUIS.

b @ [rRUISTracker (Script) @ %,
Default Pasition (meters) X 0 ¥|0.75 Zio

Position Tracker | Kineet 2 $ |
Kinect Player Id 1]
Jaint | Head ¢
Position Offset (met X 0 ¥10.15 Z-0.05
Filter Position b

ol =Y re ™ 200
Enables simple Kalman filtering for position
tracking. Recommended for Kinect,

http://ruisystem.net/
https://forum.ruisystem.net/
http://unity3d.com/

Requirements

Device Windows | OSX | Additional details

HTC Vive X Steam and SteamVR required. All OpenVR compatible
VR headsets and controllers are supported.

Oculus Rift X Latest Oculus Home required. Oculus Touch controllers
work only through OpenVR, which requires SteamVR.

Kinect v1 X 32-bit Unity Editor and standalone builds only. Win32-bit
version of OpenNI 1.5.4.0 required.

Kinect v2 X Windows 8.1 and 10 only. Windows Kinect SDK 2.0
October 2014 release (2.0.1410) required.

PS Move X X PlayStation 3, PS Eye, and Move.me software required.

Razer Hydra X (X) | Enabling Razer Hydra in OSX’s Unity Editor or 64-bit

builds causes instability. 32-bit builds should be fine.

Known issues

e Shadows work only when rendering for head-mounted displays. This is a Unity
bug related to custom projection matrices. To enable correct shadows for other
displays, see this guide.

e Kinect v2: If the avatar is too shaky, then enable “Filter Rotations” from “RUIS
Skeleton Controller” component. This filtering currently causes a lot of garbage
collection, potentially resulting in poor framerates.

e RUISSelectableHingeJoint component used in BigLever and ThrustLever prefabs
has a bug: the closer its orientation in world coordinates upon startup is to Euler
angles (90, 0, 0), the less the hinge interaction works. Orthogonal orientations
such as (0, 90, 0) work perfectly, even if they are rotated to (90, 0, 0) after startup.

https://www3.oculus.com/en-us/setup/
https://drive.google.com/file/d/0B0dcx4DSNNn0WVFwVExDRnBBUkk/edit?usp=sharing
http://www.microsoft.com/en-us/kinectforwindows/
http://blog.us.playstation.com/2011/07/26/move-me-available-today-on-playstation-store-free-for-students-and-educators/
https://forum.ruisystem.net/forum/main-category/main-forum/380-guide-rendering-shadows-correctly-for-non-head-mounted-displays

Installation

RUIS for Unity requires Unity 5.4 or later (both Windows and OSX are supported). It has been
tested with version 5.4.0F3.

Optional drivers and software

Kinect v1 and PrimeSense sensors are supported only via OpenNI software

Kinect v2 is supported via Kinect for Windows SDK 2.0 (Windows 8 and 10 only)
Oculus Rift requires the latest Oculus Home

All other head-mounted displays, including HTC Vive, require Steam and SteamVR
PS Move controllers are supported via Move.me software for PlayStation 3

Installing a head-mounted display

If you only intend to use Oculus Rift, download and install Oculus Home. If you are also using
Oculus Touch controllers or any other head-mounted displays such as HTC Vive, then do the
following: go to Steam website, download and install Steam. Upon installation, you need to
create a Steam account. After signing in, use Steam’s search tool to find SteamVR software and
install it. Make sure that your RUIS project has the “Virtual Reality Supported” option
enabled in Unity’s “Player settings”.

Installing Kinect v2

Go to Kinect for Windows website, download Kinect for Windows SDK 2.0 and install it. We
have tested that RUIS works at least with October 2014 release (2.0.1410). Use the Kinect
Configuration Verifier tool to ensure that your system is compatible with Kinect v2.

Installing OpenNI for Kinect v1 / ASUS Xtion / PrimeSense Sensor

You only need to follow through this section if you plan to use Kinect v1 with RUIS on your
computer, otherwise you can skip this section. RUIS for Unity takes advantage of “OpenNI Unity
Toolkit” that requires Win32-bit version of OpenNI 1.5.4.0. For Kinect v1 only 32-bit Unity
Editor and Windows standalone builds are supported. If you have Kinect for Windows v1
(as opposed to Kinect for Xbox 360) you should also read the Troubleshooting section in the
end of this readme.

You need to install OpenNI and NITE middleware before using Kinect v1 in RUIS. Check your
installation ~ validity by running the NiSimpleViewer example application at
\OpenNI\Samples\Bin\Release\ directory. If it shows depth image from Kinect v1, you have
successfully installed OpenNI.

https://store.unity.com/download
http://blog.us.playstation.com/2011/07/26/move-me-available-today-on-playstation-store-free-for-students-and-educators/
https://www3.oculus.com/en-us/setup/
http://store.steampowered.com/
http://www.microsoft.com/en-us/kinectforwindows/
https://developer.microsoft.com/en-us/windows/kinect/hardware-setup
https://developer.microsoft.com/en-us/windows/kinect/hardware-setup

Kinect v1 and Windows 7 / Vista / XP

Before installing Kinect v1, make sure that you have uninstalled all existing OpenNI, NITE,
Primesense, and SensorKinect instances from Control Panel’s “Uninstall a program” section,
and reboot your computer. Download the following OpenNI installation file package:
https://drive.google.com/file/d/0B0dcx4DSNNnOWVFwVEXDRnBBUKk/edit?usp=sharing

Unzip the downloaded package, and install its files in the following order (If the download link
was dead, you need to google for the below files):

OpenNI-Win32-1.5.4.0-Dev1.zip

NITE-Win32-1.5.2.21-Dev.zip

SensorKinect093-Bin-Win32-v5.1.2.1.msi

Sensor-Win32-5.1.2.1-Redist.zip

e

Kinect v1 and Windows 8/10

Using the same files as for Windows 7, follow this procedure to install drivers for Kinect v1:
1. Uninstall any existing OpenNi, Nite, and the Kinect v1 drivers.

Windows key + R to open the run prompt

shutdown.exe /r /o /f /t 00

Select Troubleshoot

Select Advanced

Select Windows startup and then restart

Enter the option for Disable Driver Signature

Reinstall OpenNi (32-bit version), Nite, and the Kinect v1 driver.

®NOoOOhAWDN

Kinect v1 and OSX

Kinect v1 for OSX is not supported. RUIS uses “OpenNI Unity Toolkit” that supports
Win32-bit version of OpenNI only.

VR Headset and Motion Controllers with Kinect

RUIS features MecanimBlendedCharacter prefab, which is a feature-rich character controller for
applications with first- or third-person view. This prefab’s scripts automatically select the most
suitable head-mounted display tracking between Oculus Camera, OpenVR tracking (e.g.
Lighthouse base stations), Kinect, PS Move, or Razer Hydra. The head tracking device is
decided at runtime depending on which devices are enabled in RUIS’ InputManager or
otherwise detected. Note: As of RUIS 1.10, the automatic head position tracker selection is
mostly relevant for Oculus Rift DK1 and similar devices, which have not been tested with RUIS
1.10 since we don’t posses such devices anymore. If “Virtual Reality Supported” option in
enabled in Unity’s “Player settings” and a head-mounted display is detected, then the
OpenVRHeadTracker is selected upon startup. If that is not the case and all the input devices
are disabled in RUIS’ InputManager, then WithoutHeadTracking is selected.

https://drive.google.com/file/d/0B0dcx4DSNNn0WVFwVExDRnBBUkk/edit?usp=sharing

The MecanimBlendedCharacter prefab contains a human 3D model that is animated with Kinect
v1, Kinect v2, or a “Generic Motion Tracker”. You can substitute the default model with your
own. Mecanim walking animation overtakes pose input from Kinect whenever the player is
moving the character either with keyboard, gamepad, OpenVR (e.g. Vive) controller [support
coming soon], PS Move Navigation controller, or Razer Hydra controller. You can use your
own Mecanim animation graph and use RUIS features to write a script that blends Mecanim
animation with Kinect pose data in real-time. See KinectTwoPlayers or OpenVrExample at
\RUISunity\Assets\RUIS\Examples\ and modify the MecanimBlendedCharacter gameobjects to
get started.

¥ MecanimBlendedCharacter @ Inspector |]

© Inspector | o -
¥ Constructor L MecanimBlendedCharacter [static v | M [Constructor Llst
P HeadTrackers . - rer— ™ T o i T i T T —
JumpGestureRecognizer sy = s s e m— Fm R, —
» PSMoveWand Prefab Select | Revert | Apply Prefab | Select Revert | Apply.
P RazerOffset F .~ Transform @#® |».~ Transform
StabilizingCollider % Rigidbody g# |v E_-l [MRUISSkeleton Controller (Script)
¥ || M RUISCharacter Controller (Script) [#, Body Tracking Devic| Kinect 2
Character Pivot Typs Kinect Tarso 4]
KinectZ Skeleton 1D 0 il 0
BliedePbt L] Switch To Available I[»]
Head Rotates B
Head Points Wz Hierarchical Mode|
lgnore Pitch and Rol Update Root Position s
Ground Layers | Default. Enviranment Root Speed Scalirx /1 y1 1
Ground Distance Twi 0.1 Update Jaint Position]
Dynamic Friction Update Joint Rotatior[s
Cynamic Mater None (Physic Material) o Filter Rotations [
Feet Affect Groundin [Rotation Smoothn 200
v || M RUISCharacter Locomotion (Script)i %, Scale Bones
Turn Right Key |E t] Scale Length Only[]
Turn Left Key = 3| Length Axis for Se %
Rotation Speed 60
Moving Speed 2
Sprint Effect 1 Torso and Head Joints
Max Acesieration 20 Root Joint LBip001 (Transform)
Jump Strength 60 Torso A Bip001 (Transform)
Speed Effect on Jum 0 Neck A Bip001 Neck (Transform)
Aeral Acceleration |20 Head A Bip001 Head (Transform)
Aeral Drag 4
Aerial Mability 15 Ao i - —
s Hacer Hydra Left Shoulder ﬂ @ Right Shoulder ﬂ
L T Left Elbow LBip0 @ Right Elbow LBip
Strafe, Don't i Left Hand L Bip0 @ Right Hand LEip
Use PS Navi Controll[s Leg Joints
Controller ID 1 Left Hip TIDU @ Right Hip LBip
Strafe, Don't T Left Knee LBip0, @ Right Knee LBip
v|x RUISHead Tracker Assigner (Scripild . Left Foot LBip0| @ Right Foot LBip
Script s RUISHeadTrackerAssign| © Traek Krikde ™
Script Enabled)
¥ Head Trackers EIngex 1nnix PR
& 7 Left Thumb A Bip0 © Right Thumb LBip
Elerment 0 - RotationOnlyTracker (RL © Track Fist Clenching
Track Thumbs

You can make an application with a third-person view using MecanimBlendedCharacter if you
remove its RUISHeadTrackerAssigner component and the HeadTrackers gameobject parented
under it, and create a new RUISCamera that follows the MecanimBlendedCharacter. A more

simplified version of

MecanimBlendedCharacter is ControllableCharacter prefab, that is

animated by Kinect and has the same features but does not include components for blending
Mecanim animation.

By default the MecanimBlendedCharacter is affected by gravity, so you should place it on a
static Collider. It has OpenVRWands, PSMoveWand, and RazerOffset child gameobjects, which
contain 3D Wands that can grab and manipulate objects. You can delete or modify those
objects. The JumpGestureRecognizer child gameobject contains scripts that make the character
jump if Kinect is enabled and detects the player jumping. The recognition is far from perfect
however, and you can disable the JumpGestureRecognizer if you like.

The MecanimBlendedCharacter prefab uses the Constructor character 3D model provided by
Unity. You can replace the prefab’s 3D model with your own avatar model. In that case you
need to relink the Joint Transforms in the RUISSkeletonController component (see the right side
of the above image), found in the Constructor gameobject. If your avatar’s rig has vertices
attached to the root Transform, then link that Transform both to “Root Joint” and “Torso” in
RUISSkeletonController. If you use Kinect v2 and have “Track Fist Clenching” enabled, you
should make sure that your avatar rig’s finger joints all include the substring “finger” or “Finger”
in their name. See this guide to make sure that you maintain all the correct scripts and links
between them when replacing MecanimBlendedCharacter's 3D model with your own. If you
don’t use Kinect to animate your character, then you might also need to adjust the Y-coordinate
of the StabilizingCollider gameobject’s Transform.

Using only a head-mounted display

Use mouse and keyboard for controlling the MecanimBlendedCharacter. See Avatar Controls
section below. If you are not using body-tracking devices like Kinect, and instead use only
OpenVR compatible tracking devices (e.g. Lighthouse Basestations, Oculus Cameras), then the
avatar position follows the head-mounted display’s location, in which case you should do the
following: find the InputManager gameobiject that is parented under RUIS gameobject, change
the “Master Coordinate System Sensor” to OpenVR. Experiment with different combinations
of “Head Rotates Body” and “Head Rotates Walking Direction” parameters toggled on and
off in RUISCharacterController component, to see which head-mounted display control
schemes are available to you.

Head-mounted display + Kinect v1 or v2

Place the Kinect so that it can see you and the floor. The avatar’s pose and limbs’ length is
tracked by Kinect. With Kinect v1 you need to stand in front of the Kinect during gameplay while
wearing the head-mounted display, while Kinect v2 can also track you while you are sitting on a
chair. You might need extension cords with Oculus Rift. You need to calibrate the OpenVR
and Kinect coordinate systems by displaying the RUIS menu (ESC) in run-time, selecting
“Kinect - OpenVR” from the Device Calibration drop-down menu, and clicking the “Calibrate
Device(s)” -button. We recommend that you use a OpenVR compatible wireless controller (e.g.
Vive controller, Oculus Touch) to control the MecanimBlendedCharacter locomotion. NOTE:
RUIS menu can only be interacted with by using a mouse.

https://forum.ruisystem.net/forum/main-category/main-forum/370-replace-the-original-3d-model?p=372#post372

Oculus Rift + Razer Hydra (LEGACY)
Place the Razer Hydra base station on your desk so that its cable ports are facing away from
you, like you would do with any Razer Hydra game. One controller (RIGHT) will be wielded
normally in your hand and is used for avatar locomotion, grabbing objects, etc., while the other
(LEFT) needs to be attached on the left side of your head for head tracking:

You can use e.g. a rubber band to tie the Razer onto the Rift's strap. When the scene starts, it
asks you to point the LEFT controller (on the head) towards the Razer Hydra base station and
to press the trigger button. Same is repeated for the hand-held RIGHT controller.

Oculus Rift + PlayStation Move (LEGACY)
Attach the PS Move controller designated as GEM[0] in Move.me software on the topmost strap
of Oculus Rift (two rubber bands work well):

The strap and the rubber bands should be kept tight to minimize any controller wobble when
you move your head. The Move button should be pointing up towards the ceiling when you're

standing straight. PS Move GEM[1] acts as a 3D Wand that can grab and manipulate objects. If
you want to use PS Navigation controller to make the MecanimBlendedCharacter walk, run, and
jump, then be sure that the “Controller ID” in RUISCharacterLocomotion component of
MecanimBlendedCharacter corresponds to the ID that can be seen in the Controller Settings of
PlayStation. You can access those settings if you press and hold the PS Navigation controller’s
PlayStation button.

If both PS Move and Kinect are enabled, then you need to calibrate their coordinate
systems by displaying the RUIS menu (ESC) in run-time, selecting “Kinect 1 - PS Move” from
the Device Calibration drop-down menu, and clicking the “Calibrate Device(s)” -button (see
Example: Kinect and PS Move calibration section for details).

If PS Move is enabled and Kinect is disabled, you may need to edit y-value of translate
element in the file ‘calibration.xml’ for the head position to appear at correct altitude.

Display Manager

You can have your Unity application render 3D graphics on any number of mono and stereo
displays, together with one head-mounted display, when you use RUIS and run your
application in windowed mode. You need to have your displays arranged sideways in your
operating system’s display settings, because RUIS automatically creates a game window where
all the viewports are side-by-side. When you intend to use multiple displays, change the
“D3D9/11 Fullscreen Mode” settings to “Fullscreen Window” from Unity’s Standalone
Player Options.

RUIS display configuration can be edited through the DisplayManager gameobject that is
parented under RUIS gameobject. The RUISDisplayManager script shows an overview of your
current display setup, whose individual displays are parented under the DisplayManager
gameobject. When adding new displays in RUIS, keep in mind that each RUISDisplay needs
to have a RUISCamera gameobject linked to it when you want something to be rendered on
those displays. If you have a RUISHeadTrackerAssigner script (comes with the
MecanimBlendedCharacter prefab) in your scene, it will attempt to link one of its RUISCameras
to any RUISDisplay without an existing link.

If you want to simultaneously render to a head-mounted display and other displays, then
you should disable the “Show HMD View” option in RUISDisplayManager.

A basic example of using RUISDisplayManager to create a multi-display setup without
head-mounted displays is presented in the DisplayManagerExample, which you can find at
\RUISunity\Assets\RUIS\Examples\ folder. Please note that currently RUISDisplayManager
does NOT utilize Unity’s recently added multi-display capabilities. We will explore that prospect
in the future.

https://docs.unity3d.com/Manual/MultiDisplay.html

= Hierarchy | Y@ [« RUIS Display Manager (Script) h @ RUIS Display (Script)

| Create ¥ | (oAl ¥ Displays XML Schema | = display.xsd _
¥ Cameras Size 3 XML filename ‘NewDisplay2.xml
P First Parson Controller Element 0 |- MainDisplay (RUISDisplay) Load from File in Editor L)
¥ Main Camera Element 1 i Mini (RUISDisplay) Resolution X 1920
¥ Mini Display Camera Element 2 > Huge Stereo (RUISDisplay) Resolution ¥ 1080
¥ RUIS 3 3z
= = = = = Split st Displ
¥ DisplayManager Below configuration has multiple RUISDisplays. 'Display Re R u?p £ o
Huge Stereo Dialog' setting is automatically disabled in Unity's Player Se Eye Separation 10.06
Main Display Stereo Type | side By Side
Mini Double the Space used []
¥ InputManager l Add Display Attached Camera | = 1st Person Camera (RUISCamera)
MainDisplay (1280x800)
Mini (320x320) Head Tracked CAVE Dlspla;.g
Huge Stereo (1920x1080) Cf\\VE Hea.d Tracker i~ OpenVR Head Tracker (RUISTracker)
Display Width |2
Display Height |1.5
g Display Center Position X |0 Y|1.5 IZio
MainDisplay Display Mormal Vector X 0 Y| 0 -1
Huge Stereo 2 r T
Display Up Vector X|0 ¥ [1 Z0
Show HMD Wiew)
Hide Mouse On Play [|
Display With RUIS Menu: 0 MainDisplay
Ruis Menu Prefab WRUIS NGUI Menu
RUIS Menu Local Coordinates: : Enes
SUH SRR R L IPHRR Total required resolution 1920x1080
b4 o
¥ o
z 0.4
RUIS Menu Scale:
X-scale 0.3
f-scale {0.3
Menu Cursor Prefi?uﬂenuCursor
Menu Layer [RUISMenu
RUISCamera

Each scene in a RUIS project should be rendered using a RUISCamera, a prefab that can be
found in \RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\ folder. The
"MecanimBlendedCharacter’, "RUIS OpenVR Rig’, and “ControllableCharacter’ prefabs also
come equipped with RUISCameras. If the “Virtual Reality Supported” option is enabled,
then RUISCamera will by default render to a head-mounted display. If the “Show HMD
View” is also enabled in RUISDisplayManager, the default RUISCameras will also render
on the game window, possibly covering other rendered viewports. This will occur even if
the RUISCameras are not linked to RUISDisplays when VR is enabled in Unity, because
we wanted to keep layered rendering simple for head-mounted displays. You can enforce
RUISCamera to always act as a non-head-mounted display camera by setting the “Target
Eye” to “None (Main Display)” in the Camera component of RUISCamera->CenterCamera.
Please note that the aforementioned variable is hidden by Unity if “Virtual Reality Supported”
option is disabled.

RUISCamera also contains LeftCamera and RightCamera child gameobjects, each with Camera
components. They are only used for stereo 3D displays, when the RUISCamera is linked to a
RUISDisplay that has the “Split Stereo Display” option enabled. For stereo 3D displays,
side-by-side and top-and-bottom modes are supported.

RUISCamera component has only two visible variables in the Unity Inspector: Horizontal and
Vertical FOV. They only have effect if the RUISCamera is acting as a non-head-mounted
display camera, rendering on a RUISDisplay that has the “Head Tracked CAVE Display” option
disabled.

Other Features

3D user interface prefabs for selection and manipulation

RUIS for Unity can be used to easily create a custom 3D user interfaces with custom selection
and manipulation schemes by the use of so called Wand prefabs. Currently supported wands
(input devices) are: MouseWand, OpenVRWands, PSMoveWand, RazerHydraWand, and
SkeletonWand (Kinect). These prefabs are found at
\RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\Input Methods\. To see how to
use these prefabs, check out BowlingAlley (OpenVRWands), MinimalScene (MouseWand),
OpenVrExample (OpenVRWands), and KinectTwoPlayers (SkeletonWand) at
\RUISunity\Assets\RUIS\Examples\ .

SkeletonWand is different from the other Wands because selection events are not activated via
buttons, but using gestures. Currently the only available selection gestures are hold and fist
gestures (latter is just for Kinect v2). Selection with the hold gesture works by holding the
SkeletonWand (your hand) still for 2 seconds while pointing at the object to be selected.
Release (deselect) works the same way. The fist gesture works if infrared features of Kinect v2
work properly, and this depends on your GPU drivers. You can test that by running the Kinect
v2 Infrared Basics demo from SDK Browser v2.0, which should display an infrared image. For
Nvidia GPUs, we have tested that the infrared features of Kinect v2 work at least with GeForce

340.52 drivers.
3 Project | Econsole

| Craate ™

¥ ﬁﬁ.ssets
& CsML
55 OpenNl
% PSMoveWrapper
¥ G RUIS
&5 Editor
b 55 Examples
Y ﬁ Resources
¥ @ RUIS
53 Editor
ﬁ Fants
b 53 Graphics
53 Models
¥ 53 Prefabs
&5 Calibration
¥ 55 Main RUIS
53 Common Objects

== |nput Methods

If you do not have Kinect, OpenVR controllers, Razer Hydra, or PS Move, then use MouseWand
prefab that relies on 2D mouse for object manipulation purposes. When your scene is playing,
the above mentioned Wands are used to manipulate gameobjects that have a RUISSelectable
script, Mesh Renderer, Rigidbody, and Collider components. See the Crate gameobjects in any
of our example scenes. The selection ray of a Wand is checked against the Collider
components (you can have several of them in a hierarchy under one object) of a gameobject to
see whether it can be selected (triggered with a button or a gesture in case of Kinect) and
manipulated by the Wand.

In RUIS for Unity the 3D coordinate system unit is meters, which is reflected in the position
values of the Wands, Kinect-controlled avatars, and gameobjets with RUISTracker component.
You can translate, rotate, and scale the coordinate systems of Wands by parenting them
under an empty gameobject and applying the transformations on it.

Please note that in many 3D user interfaces it makes sense to disable gravity and other physical
effects of the manipulated objects; For example, in a CAD interface you don’t want geometric
shapes to fall down after moving them.

In the below figure’s RUISPSMoveWand component, “Controller Id 0” corresponds to controller
referred as GEM[0] in the Move.me screen. The “Selection Layer” is the Layer onto which the
selected object will be transferred for the duration of the selection. You can alter the object
manipulation scheme by changing the “Position Grab” and “Rotation Grab” options.

O Inspector | o -= O Inspector | =
'3.-‘ o [Crate [[]static > M [PsSMovewand [static =
Tag [Untagged i Layer [Defaul i |7 Tag [Untagged 4] Layer [Defale &
Prefab | Select , Revert , ;\'-\-.pﬁ-ly | Prefab Select , Revert , f\i:p.ly
b .~ Transform %, |r .~ Transform g %
» |/ Cube (Mesh Filter) @ #. |v [z MRUISPSMove Wand (Script) @ %,
b g ¥ Box Collider @ = Script RUISPSMoveWand o]
b . [MMesh Renderer i %, Selection Button | Trigger $ |
v | M RUISSelectable (Script) & | S=ntraierid -
Script v RUISSelectable [o] Where To Copy Colo Mone (Renderer) (o]
Clamp To Certain Dist[_] v Izuj MRUISWand Selector (Script) g %
Distance To Clamp To 1 Selection Ray Type | Wand Direction &
Highlight Matenal W HighlightedCrateMaterial =] Ray Length 200
Selection Material W SelectedCrateMaterial @ Ray Start Distance |0.12
Maintain Momenturmn A [Head Transform None (Transform)
Conti Collisi C s :
ontinuous Collision Tudle Selestian C]
Grab While Button Di[a]
lgrored Layers |_ CharacterBody, CharacterStabilizer, Sels# |
Selection Layer | SelectedObjects s |
Position Grab | Alang Selection Ray |
Rotation Grah | Relative To Wand i

PlayStation Move controllers

If you have Move.me software for PlayStation 3 and want to use PS Move controllers in your
RUIS for Unity scenes, tick the “PS Move Enabled” option in InputManager gameobject
(parented under RUIS gameobiject). Otherwise keep that option unchecked, because the scene
will crash or freeze for a long time when entering playmode if RUIS is trying to connect to
a IP address that is not available.

Be sure to set the IP address and port parameters of InputManager to correspond to the ones
that Move.me software is displaying. When building your application with PS Move controller
support, remember to allow the executable file through your firewall (both UDP and TCP)
so that it can connect with Move.me server. Please note that pressing SELECT button will turn
off the PS Move controller’s light and that controller is not tracked anymore. This is a feature of
Move.me software.

"= Hierarchy | .= |7 [MRuUISInput Manager (Script) @
-bcmm rl. -o';llr"“ = Filename inputConfig.txt

Assault Rifle

Rl e [Import from XML H Export to XML |
» Environment Load from File in Editor []
» Flagpole
T PS Move Enabled)

MouseWand PS5 Move IP 130.233.46.224
¥ Player 1 PS Move Port 7899
¥ Player 2 Auto-connect to Move Me [
¥ RUIS

» Displayianager Enable PS Move Calibration []

InputManager Max amount of controllers 4

B RUISCamera
RUISMenu
B Watering Bottle

Kinect controlled full-body avatars

If you have successfully installed the drivers for Kinect v1 or v2 and want to use it in your RUIS
for Unity scene, make sure to tick the “Kinect Enabled” / “Kinect 2 Enabled” option in
InputManager gameobject (parented under RUIS gameobject). To get started, use the
ConstructorSkeleton, Mannequin, or MecanimBlendedCharacter prefabs that are located in
\RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\Common Objects\ . You can
replace the prefabs’ 3D models with your own. Please note that you can use rigged models
with either a hierarchical bone setup (e.g. ConstructorSkeleton) or a flat, one-level deep bone
setup (e.g. Mannequin). For latter ones, you need to uncheck the “Hierarchical Model” option in
the RUISSkeletonController script.

You can translate, rotate, and scale your Kinect-controlled avatars by parenting them under
an empty gameobject and applying the transformations on it.

If you have “Floor Detection On Scene Start” enabled in RUISInputManager, or if you have
calibrated Kinect using RUIS, you can take advantage of the following useful features:

1. Set Kinect Origin To Floor -feature can be turned on from the InputManager
gameobject. With this option enabled the Kinect-controlled avatars will always have their
feet on the XZ-plane (provided that the avatar gameobjects have model-dependent,
correct Y-offsets), no matter what height your Kinect is placed on.

2. You can tilt your Kinect downwards, and RUIS will use a corrected coordinate system
where the XZ-plane is aligned along the floor, preventing Kinect avatars from being
skewed in Unity.

O Inspector | i = Hierarchy | = Hierarchy
u InputManager [Istatic « Create 7| (arAll | Create ~ | el
Tag [Untagged #| Layer | Default #| [FRUIS B RUIS
HreraEiG Calect _| o T— | Aﬁnh‘ | MacanimBlendedCharacter Mannaguin
¥ Constructor P Head
P~ Transform Q= ¥ Bip001 B Right Faat
v @ [RUISInput Manager {Script) o, ¥ Bip001 Pelvis F Torso
(Import fram XML__|| Exportto XML __| ¥ Bip001 Spine P Left Hip
; - Pk Bip001 L Thigh P Left Hand
Filename inputConfig.xml » Bip001 R Thigh b Left Elbow
XML Schema = InputManager usd o] ¥ Bip0D1 Spinel » Left Knee
Load frem File in Edr[_] ¥ Bip001 Neck P Left Shoulder
P Bip001 Head P Right Elbow
P Bip001 L Clavicle » Right Shoulder
PS Move Enabled [] - BiEUUl R Clavicle S pight Khree
Razer Hydra Enablec[] ¥ Bip001 R UpperArm F Right Hip
¥ Bip00O1 R Forearm P Left Foot
Kinect Enabled [P Bip001 R Hand » Right Hand
Max Kinect Play 1 construction_worker Sinenselnput
Flaar Detection P HeadTrackers B Surroundings
JumpGestureR ecognizer
Kinect 2 Enabled [] » PSMoveWand
v @ RUISCoordinate System (Script) ﬁ o, " ;::beltl’igizgollider
Cahbrat!on XKML File cal|brat|.on.x_.m| » SkeletonWand
Calibration XML Schema: calibration.xsd » SkelstonWand
Load from XML [Sixenselnput
Set Kinect Origin To [P Surroundings
Master Coordinate Finecr_1 %]
Switch Te Availab
Location Offset X0 Y 0 Zo
¥ Rotation Offset O
Use Master Coordinz

Using multiple motion trackers with a common coordinate system

If you have multiple motion tracking devices that you want use simultaneously with a shared
coordinate system, then choose one of the devices as the “Master Coordinate System
Sensor” and enable the “Use Master Coordinate System” toggle from the
RUISCoordinateSystem component (see above image). The RUISCoordinateSystem
component is located in the InputManager gameobject, which is parented under RUIS
gameobiject. Lets say that you chose OpenVR as the “Master Coordinate System Sensor”, and
you want to use it together with Kinect_2 and PS Move. Then you would need to calibrate two
device pairs: Kinect_2-OpenVR and PS_Move-OpenVR. The following section will tell you how

to do that. NOTE: If you are using SteamVR with head-mounted displays, then it is best to
set the “Master Coordinate System Sensor” to “OpenVR”. This is to avoid a bug in
SteamVR that causes peculiar extra translations to head-tracked positions when non-uniform
scale is applied by RUISTracker to RUISCamera by RUIS when attempting to make the
OpenVR coordinate system to conform the other device’s coordinate system.

Calibrating two different motion trackers to use the same coordinate system

Calibration is needed for using two or more different motion trackers (e.g. Kinect and OpenVR
controllers) together in the same coordinate system, and also for aligning Kinect v1 or Kinect
v2 coordinate system with the room floor. Calibration needs to be performed only once, but you
have to do it again if you move either one of the calibrated sensors. Results of the calibration (a
3x3 transformation matrix and a translation vector) are printed in Unity’s output log and are also
saved in an XML-file at \RUISunity\calibration.xml.

You can calibrate devices by running any of our example scenes in Unity Editor, pressing ESC
key to show RUIS menu, enabling those devices whose drivers you have successfully installed,
selecting the device(s) that you want to calibrate, e.g. “Kinect 2 - OpenVR (controller)”, from the
Device Calibration drop-down menu, and clicking the “Calibrate Device(s)” -button. This will
start the interactive calibration process by loading
\RUISunity\Assets\RUIS\Scenes\calibration.unity, which we will describe below in more detail for
Kinect 2 and OpenVR controller.

NOTE: All head-mounted displays can be calibrated by choosing the “[OtherDeviceName]
- OpenVR (HMD)” option in the Device Calibration drop-down menu. This option has
erroneously the same name even if you are calibrating Oculus Rift without using SteamVR, and
the results will be saved to “OpenVR-[OtherDeviceName]” element in the calibration.xml file. If
you have Kinect 2 we recommend using “Kinect 2 - OpenVR (controller)” calibration
method, because it is currently the only process that allows interactive finetuning of the
calibration result.

Device Calibration

Select device(s) | Lise PSMove

l Calibrate Devicze[s])] I_J Use Kinect

J- U=e Kinect =

Display Managemeant | [luco Hydra

Save Configuration B
Restart Scens _J

Discard Configuration |

l LDuit aApplication

Device Calibration

Kinect 1 floor data

SAipehe || fleie)p efzpes)

N
Kinect 2 - OpenVR (HMD)
Kinect 1 - OpenVR (HMD)

Example: Kinect 2 and OpenVR controller calibration

Once the calibration scene has loaded, hold OpenVR controller (e.g. Vive controller) in your
right hand, and step in the front of the Kinect. The interactive calibration process instructs you to
press the trigger button of the OpenVR controller to start the calibration. During the calibration
process, keep the OpenVR controller in your right hand and move it slowly so that there is a
clear line of sight between it and both the Kinect and OpenVR sensors (e.g. Lighthouse base
stations).

Calibrating.. 617100 sampies taken.
-

s

- T— “‘If:

When the calibration is complete, you will see the results. After calibrating Kinect 2 with
OpenVR controllers, you can put on the OpenVR head-mounted display to see the avatar’s
first-person view. At that point you can finetune the translation part of the calibration by
pressing down the trackpad button of the OpenVR controller (analog stick button in Oculus
Touch) and moving the controller into the direction where you want to modify the translation.

For an example of how to use Kinect and OpenVR controllers (e.g. Vive) together, please see
the BowlingAlley or OpenVrExample at \RUISunity\Assets\RUIS\Examples\

If you are holding a OpenVR controller in your hand, the Kinect-controlled avatar's hand and the
OpenVR controller's virtual representation do not alway appear exactly in the same position
because no calibration gives perfect results and Kinect is less accurate than OpenVR
controllers. Snapping of hand locations to handheld OpenVR controller locations might be
added in a future release of RUIS for Unity.

When you are calibrating Kinect v1 or v2 (just themselves or with other devices), it is important
that Kinect sees the floor properly (see the red Kinect depth view in the above screenshot for
an example), so that the Kinect can detect its distance from the floor and its orientation with
regards to the floor. That data is used to align the Kinect coordinate system’s XZ-plane with
floor plane.

Example scenes

Examples of using RUIS for Unity can be found at \RUISunity\Assets\RUIS\Examples\
Following two points are important in BowlingAlley, KinectTwoPlayers, and OpenVrExample
scenes:

1. Choose the InputManager gameobject (parented under RUIS gameobject) and enable
those input devices that you have connected to your computer. Head-mounted
displays and OpenVR controllers are automatically detected and you don’t need to
enable those.

2. If you have two or more input devices, select one of them as the “Master Coordinate
System Sensor” from RUISCoordinateSystem component (select OpenVR if you are
using SteamVR), start the scene, press ESC to open the RUIS menu, choose one of the
device pairs from “Device Calibration”, and click “Calibrate Device(s)”. After the
calibration is completed, repeat the process for the remaining device pairs that contain
the “Master Coordinate System Sensor” (you can skip “Kinect floor data” calibration for
Kinect v1 and v2).

OpenVrExample

This example presents MecanimBlendedCharacter gameobject, which is a versatile beast. In
this demo Kinect v1 or Kinect v2 animate the player avatar, while head-mounted displays offer a
first-person view from the eyes of the avatar. Additionally OpenVR controllers can be used to
interact with objects. When the scene is running, you can control the constructor character with
keyboard, gamepad, PS Move Navigation controller, or Razer Hydra controller (OpenVR
locomotion coming later).

MinimalScene

This scene is a good starting point for a blank RUIS scene. You can delete the Floor, Crate,
Directional light, and MouseWand gameobjects. If you want to change this scene to a
minimal scene with OpenVR (e.g. Vive) controllers, then replace the RUISCamera
gameobject with the "RUIS OpenVR Rig” prefab (at
“\RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\’). The "RUIS OpenVR Rig’
prefab is RUIS’ equivalent for SteamVR’s [CameraRig] prefab.

KinectTwoPlayers

This example demonstrates how you can create a multiuser Kinect application in RUIS. The
Kinect avatars are equipped with Collider components so that they can push objects around.
Also notice how the Kinect-controlled SkeletonWands can be used for object manipulation.

BowlingAlley

Bowling with OpenVR controller (e.g. Vive controller): Use trigger button to grab the bowling ball
and release it on your throw. Menu-button resets the bowling ball position, and trackpad-button
places the bowling pins. Kinect is used to control a simple mannequin avatar (Mannequin
gameobiject). Notice how Mannequin’s body parts are all parented in a flat fashion and that the
“Hierarchical Model” option is unchecked in its script, as opposed to Constructor gameobject
parented under the MecanimBlendedCharacter gameobjects in KinectTwoPlayers and
OpenVrExample scenes. Also note that the Mannequin model does not work well as an avatar
viewed from first-person.

DisplayManagerExample

Run the scene to see how settings at DisplayManager gameobject affect the rendered
multi-display output. Additionally you can use mouse, space-key, and WASD-keys to control a
simple first-person movement. A MouseWand prefab is present, so you can use left mouse
button to grab cube objects.

CaveExample

This example with three RUISDisplays illustrates how RUIS can be used for CAVE systems
(with head tracking and all). You can apply keystone correction for projector-based display
walls by accessing the RUIS menu with ESC-key when your scene is running, clicking “Display
Management”, and dragging the viewport corners. In this demo you can press the IJKLUO-keys
on the keyboard to simulate head-tracking, which shows you how the asymmetric view frustums
get distorted as the simulated head moves. Alternatively, you can change the “Head Tracker”
gameobject to get its position from some other source, like a Vive controller, Kinect head
joint, etc. For locomotion in the CAVE environment, just apply translation and rotation to the
“Cameras” gameobject under which all the RUISCameras of the scene are. You can also add
more RUISDisplays into the scene by using the “Add Display” button in RUISDisplayManager to

match your own physical CAVE setup. Remember to add a new RUISCamera and enable the
“‘Head Tracked CAVE Display” for each new RUISDisplay, and configure the physical display
parameters (Display Width, Height, Center Position, Normal Vector, Up Vector) to correspond
the physical dimensions and tracking coordinates of your CAVE setup. Please note that with
RUIS it is possible create an application that simultaneously renders to a head-mounted
display and a CAVE setup, by configuring the RUISDisplayManager and RUISCameras.
Alternatively, the application could switch between CAVE and head-mounted rendering,
depending on detected devices (you need your own scripting to switch between RUISCameras
in this case).

Avatar controls

ControllableCharacter and MecanimBlendedCharacter

Keyboard Gamepad
Move forward / backward | W/ S Left analog stick
Strafe left / right A/D Left analog stick
Turn left / right Q/E Right analog stick
Jump Space Joystick button 1, 5
Run Shift Joystick button 0, 4, 7

When Kinect and Jump Gesture are enable, you can jump in real life to make your avatar jump;
You need to stand at least 2 meters away from the Kinect, and your both feet need to clearly lift
from the ground.

Razer Hydra (RIGHT, PS Navigation controller (ID
hand-held) 1, hand-held)
Move forward / backward | Analog joystick Analog joystick
Strafe left / right Analog joystick Analog joystick
Turn left / right Buttons 3/ 4 X/0
Jump Bumper button L1
Run Joystick button L2
PS Move controller
(GEM[1], hand-held)
Grab object Trigger button Trigger button

Troubleshooting

Kinect v1 issues

e OpenNI (and Windows SDK) often have problems tracking the user properly. This is
manifested as limbs jumping around randomly, legs facing backwards, and other poor
tracking results. It is also very common that the lengths of different body parts are
poorly detected: arms are either too short or long, or legs are too big and go
underground. Keep enough distance to Kinect (between 2 - 4 meters) so that it can see
your whole body.

e For an example of how much floor area the Kinect should be able to perceive, see the
screenshot from Example: Kinect and OpenVR controller calibration section.

e On some computers it is sometimes necessary to unplug Kinect's USB connector and
plug it into a different USB port to get OpenNI examples working.

e Kinect v1 floor detection works erratically on some systems. Be sure that nothing
blocks Kinect’'s view and that it can see enough floor area when starting a new scene or
calibration process. If Kinect v1 floor detection doesn’'t work at all, then you should
disable “Floor Detection On Scene Start” for Kinect v1. In this case the
RUISCoordinateSystem script's “Set Kinect Origin To Floor” toggle works only if you
manually edit the ‘kinectDistanceFromFloor’ value from calibration.xml. Such editing
needs to be applied AFTER running Kinect calibration, because it resets the distance
value. Your Kinect controlled characters might also appear leaning forward or backward,
if your sensor is tilted downwards or upwards.

Kinect for Windows (Kinect v1)

Microsoft released Kinect for Windows v1 and Kinect v1 SDK, but they are not compatible with
OpenNlI. The kinect-mssdk-openni-bridge is an experimental module that connects Kinect SDK
to OpenNI and allows people with Kinect for Windows to use OpenNI applications. This bridge
might get RUIS to work with Kinect for Windows but there are no guarantees:
https://code.google.com/p/kinect-mssdk-openni-bridge/

Razer Hydra
If you use Razer Hydra, add the Sixenselnput prefab into your scenes, and toggle on
‘Enable Razer Hydra’ from InputManager gameobject (parented under RUIS gameobject).

If you use a head-mounted display together with Razer Hydra, you won'’t see the calibration
instructions upon loading a scene: 1. Point the left controller towards the base station and then
press the shoulder button. 2. Do the same with right controller.

When starting a scene with Razer Hydra, its buttons sometimes get “stuck” and for example the
MecanimBlendedCharacter moves automatically even without touching the buttons. If this

https://code.google.com/p/kinect-mssdk-openni-bridge/

happens, restarting the scene or unplugging and reconnecting the Razer Hydra USB cord can
help. Razer Hydra can also sometimes get confused about directions or lose one controller
altogether, in which case you need to restart the demo.

PS Move

Check that your computer and PlayStation 3 are connected to the same network, and that the
PlayStation is able to obtain an IP address. Make sure that the address for Move.me server and
port in InputManager gameobject is the same as displayed in the Move.me software on
PlayStation. Also make sure that “Load from File in Editor” is disabled in the InputManager. If
you successfully connect RUIS to Move.me server, the PlayStation3 screen should display

something like this:

SERVER. ~ ..224 ' 7899 Ccmnecttong: 1

CAMERA - PLUGGED : et e R - . 159 : 56310 @ 16

GEM[@1 - TRACKING : . PO /

(CALIBRATION OCCURED CALIBRAT SUCCEEDED 1

GEM[1] - NOT CONNECTED AL “
GEM[2] - NOT CONNECTED

1

GEM[37 = NOT

[1 ;

If RUIS for Unity is not able to connect to PlayStation via TCP (Move.me software displays
“Connections: 0”), please check your firewall settings. If your application is connected to
Move.me server but does not update PS Move state this may also be a firewall issue (Move.me
sents PS Move state over UDP to RUIS).

Unity editor and individual standalone executables have to be allowed through the firewall. In a
standalone build you will have to set the IP address and port inside a file named inputConfig.txt
that needs to be located in the same folder where the standalone executable file is. For an
example of the file format please check the file provided in \RUISunity\ .

Before calibrating PS Move with any other devices, you should keep thrusting your PS Move
controller towards and away from your PS Eye camera, until the “PS Eye pitch angle” in the

RUIS calibration scene’s viewport converges within 0.1 degree. This is because PS Eye needs
to see PS Move controller moving for awhile before Move.me software can reliably estimate the
pitch orientation of PS Eye. When you calibrate after the pitch angle has converged, this
ensures that the saved coordinate system calibration between Kinect and PS Move will be as
accurate as it can be even after restarting your computer and PlayStation. Please note that
Move.me running on PlayStation does not save the pitch angle, and after restarting it, the pitch
angle converges again slowly while you are using the PS Move controller in front of the PS Eye
camera. To get the best possible initial pitch angle, align the PS Move controller along the PS
Eye camera’s viewing axis when pressing the Move button to “light up” the controller in
Move.me.

Layers, Script Execution Order, and creating a UnityPackage of RUIS

If you create a UnityPackage of RUIS with the intention of importing RUIS to your existing Unity
project, you need to create the layers displayed in the below left image (with the same indices
and names):

® Inspector

#j Tags B

Tags
Sorting Layers

Layers

RUISInputManager

RUISHeadTrackerfssigner

Default Time

UIPanel

MIPlayerManager

RUISMenu

SettingsManager

RUISCamera

You also need to set up the Script Execution Order presented in above right image. Nearly half
of the scripts come from NGUI, which we use in our in-game menu.

Safety Warning

Wearing head-mounted-displays while standing up, moving, walking, or jumping is dangerous to
your health and potentially deadly. Author of this software recommends you to avoid the
aforementioned actions, and if you choose to perform them anyway, you do it at your own risk.
The author of this software cannot be held responsible in any way for any consequences.

Software License Limitation of Liabilities

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Licensing

RUIS is distributed under the LGPL Version 3 license for non-commercial use. If you intend to
use RUIS for commercial work, please contact us first (tmtakala@gmail.com).

