
RUIS for Unity 1.21
- Tuukka Takala technical design, implementation
- Heikki Heiskanen implementation
- Mikael Matveinen implementation

For updates and other information, see http://ruisystem.net/
For help, visit our forum: https://forum.ruisystem.net/

Introduction
RUIS (Reality-based User Interface System) gives hobbyists and seasoned developers an easy
access to the state-of-the-art interaction devices, so they can bring their innovations into the
field of virtual reality and motion controlled applications. Currently RUIS for Unity includes a
versatile display manager for handling several display devices, and supports the use of HTC
Vive, Oculus Rift, Kinect and other motion capture systems together in the same
coordinate system. This means that avatars controlled by Kinect can interact with virtual tools
represented by OpenVR controllers; a player can see and control their full body avatar, and grab
a Vive controller that is rendered as a Swiss army knife within the application for example.

Quickstart
Try example scenes at \RUISunity\Assets\RUIS\Examples\ -directory. You can develop and
test your own motion controlled applications even if you have only a mouse and keyboard,
because in RUIS they can emulate 3D input devices. If you want to use HTC Vive or Oculus Rift
together with Kinect v1 or v2, open the OpenVRExample scene and read the “Shared
Coordinate Frame for Multiple Tracking Devices” section of this document. Vive developers
should note that the term ‘OpenVR’ is used to substitute ‘Vive’ throughout this
document, RUIS variable names, component properties, and tooltip help.

Most RUIS scripts have extensive tooltip information, so hover the mouse cursor over any
properties of RUIS components in Unity Editor’s Inspector tab to learn about RUIS.

http://ruisystem.net/
https://forum.ruisystem.net/
http://unity3d.com/

Requirements

Device Win OSX Additional details

HTC Vive X (?) Steam and SteamVR required. All OpenVR compatible
VR headsets and controllers are supported.

Oculus Rift X Latest Oculus Home required. Oculus Touch controllers
work only through OpenVR, which requires SteamVR.

Kinect v1 X 32-bit Unity Editor and standalone builds only. Win32-bit
version of OpenNI 1.5.4.0 required.

Kinect v2 X Windows 8.1 and 10 only. Windows Kinect SDK 2.0
October 2014 release (2.0.1410) required.

Mocap (OptiTrack,
Vicon, Perception
Neuron, etc.)

X X
Any mocap system that can stream joint poses to
Unity is supported. Requires installing the Unity plugin
of the mocap system.

Razer Hydra / PS
Move

(X) (?) These legacy devices are now only supported via
OpenVR.

Known Issues
● When calibrating Oculus Rift coordinate frame with other devices, the Oculus Rift

headset must be visible to the Oculus cameras, and the headset must be “worn”
(i.e. its proximity sensor must be kept triggered).

● Kinect v1/v2: If the avatar is too shaky, then enable “Filter Rotations” from “RUIS
Skeleton Controller” component. If you use other mocap systems, disable it.

● Extreme avatar limb thickness values create non-uniform scaling side effects
which are compensated. A future release will mitigate the remaining issues:
scaling of hands/feet and decelerated/magnified rotations around specific axes.

● When using RUISKinectAndMecanimCombiner script to blend animations into the
real-time mocap avatar pose, then any (non-uniform) avatar limb thickness will not
work correctly. This will be fixed in a near future release.

● Shadows become buggy with RUISCamera if used with CAVE displays or keystone
correction. This is a Unity bug related to custom projection matrices. To enable
correct shadows in the CAVE display case, see this guide.

https://www3.oculus.com/en-us/setup/
https://drive.google.com/file/d/0B0dcx4DSNNn0WVFwVExDRnBBUkk/edit?usp=sharing
http://www.microsoft.com/en-us/kinectforwindows/
https://forum.ruisystem.net/forum/main-category/main-forum/380-guide-rendering-shadows-correctly-for-non-head-mounted-displays

Installation
RUIS for Unity requires Unity 5.6.5 or later (both Windows and OSX are supported). It has been
tested with version 5.6.5f1, but not with Unity 2017 or 2018.

Optional drivers and software

● Kinect v1 and PrimeSense sensors are supported only via OpenNI software
● Kinect v2 is supported via Kinect for Windows SDK 2.0 (Windows 8 and 10 only)
● Oculus Rift requires the latest Oculus Home
● All other head-mounted displays, including HTC Vive, require Steam and SteamVR
● Unity plugin of your mocap solution (OptiTrack, Perception Neuron, Vicon, Xsens…)

Installing a head-mounted display

If you only intend to use Oculus Rift, download and install Oculus Home. If you are also using
Oculus Touch controllers or any other head-mounted displays such as HTC Vive, then do the
following: go to Steam website, download and install Steam. Upon installation, you need to
create a Steam account. After signing in, use Steam’s search tool to find SteamVR software and
install it. Make sure that your RUIS project has the “Virtual Reality Supported” option
enabled in Unity’s “Player settings”.

Installing Kinect v2

Go to Kinect for Windows website, download Kinect for Windows SDK 2.0 and install it. We
have tested that RUIS works at least with October 2014 release (2.0.1410). Use the Kinect
Configuration Verifier tool to ensure that your system is compatible with Kinect v2.

Installing OpenNI for Kinect v1 / ASUS Xtion / PrimeSense Sensor

You only need to follow through this section if you plan to use Kinect v1 with RUIS on your
computer, otherwise you can skip this section. RUIS for Unity takes advantage of “OpenNI Unity
Toolkit” that requires Win32-bit version of OpenNI 1.5.4.0. For Kinect v1 only 32-bit Unity
Editor and Windows standalone builds are supported. If you have Kinect for Windows v1
(as opposed to Kinect for Xbox 360) you should also read the “Troubleshooting” section in the
end of this readme.

You need to install OpenNI and NITE middleware before using Kinect v1 in RUIS. Check your
installation validity by running the NiSimpleViewer example application at
\OpenNI\Samples\Bin\Release\ directory. If it shows depth image from Kinect v1, you have
successfully installed OpenNI.

https://unity3d.com/get-unity/download/archive
https://www3.oculus.com/en-us/setup/
http://store.steampowered.com/
http://www.microsoft.com/en-us/kinectforwindows/
https://developer.microsoft.com/en-us/windows/kinect/hardware-setup
https://developer.microsoft.com/en-us/windows/kinect/hardware-setup

Kinect v1 and Windows 7 / Vista / XP

Before installing Kinect v1, make sure that you have uninstalled all existing OpenNI, NITE,
Primesense, and SensorKinect instances from Control Panel’s “Uninstall a program” section,
and reboot your computer. Download the following OpenNI installation file package:
https://drive.google.com/file/d/0B0dcx4DSNNn0WVFwVExDRnBBUkk/edit?usp=sharing

Unzip the downloaded package, and install its files in the following order (If the download link
was dead, you need to google for the below files):

1. OpenNI-Win32-1.5.4.0-Dev1.zip
2. NITE-Win32-1.5.2.21-Dev.zip
3. SensorKinect093-Bin-Win32-v5.1.2.1.msi
4. Sensor-Win32-5.1.2.1-Redist.zip

Kinect v1 and Windows 8/10

Using the same files as for Windows 7, follow this procedure to install drivers for Kinect v1:
1. Uninstall any existing OpenNi, Nite, and the Kinect v1 drivers.
2. Windows key + R to open the run prompt
3. shutdown.exe /r /o /f /t 00
4. Select Troubleshoot
5. Select Advanced
6. Select Windows startup and then restart
7. Enter the option for Disable Driver Signature
8. Reinstall OpenNi (32-bit version), Nite, and the Kinect v1 driver.

https://drive.google.com/file/d/0B0dcx4DSNNn0WVFwVExDRnBBUkk/edit?usp=sharing

Full-body Avatars
RUIS can be used with any Unity compatible full-body motion capture (mocap) system to
animate arbitrary humanoid 3D avatars in real-time. RUIS comes with Kinect v1 and v2 Unity
addons. For using input from other motion capture systems (e.g. Perception Neuron, OptiTrack)
you need to install their respective Unity plugins.

The folder \RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\Common Objects\
contains five avatar prefabs that you can use in your scenes: Mannequin, ConstructorSkeleton,
ConstructorSkeletonWithColliders, ControllableCharacter, and MecanimBlendedCharacter.
These avatar prefabs and their differences are listed in the below table (prefab names are on
the top row). RUISSkeletonController script is the main component for using avatars in
RUIS, and each prefab comes with it. The use of Mannequin prefab is not recommended, which
is explained in BowlingAlley scene description at the “Example Scenes” section.

Mannequin Constructor
Skeleton

Constructor
SkeletonWith
Colliders

Controllable
Character

MecanimBlended
Character

Uses “Skinned
Mesh Renderer”

x x x x

Has colliders x x x x

Is affected by
physics

x x

Supports
gamepad
locomotion

x x

Real-time mocap
input is blended
with animations

x

You can translate, rotate, and scale your avatar and its motion by parenting it under an empty
gameobject upon which you apply the transformations.

All the avatar prefabs (except Mannequin) use the Constructor character 3D model provided by
Unity. You can replace the prefabs’ 3D model with your own avatar model. In that case you
need to add RUISSkeletonController component to your avatar gameobject. Then link your
avatar’s joint gameobjects to the RUISSkeletonController by dragging them into their
corresponding “Avatar Target Transforms” fields (see below image), as exemplified by the
magenta arrow in the below image. Some of the fields can be left to “None”, but we recommend
that you link all available gameobjects; at least Target Root, Pelvis, Shoulders, Elbows, Hands,
Hips, Knees, and Feet.

When using your own 3D model for the avatar, you should make sure that its “Animation Type”
is set to “Humanoid” under the “Rig” tab in the 3D model’s “Import Settings”, and that the
“Optimize Game Objects” option is disabled. Then you can automatically find the “Avatar Target
Transforms” by clicking the “Obtain Targets from Animator” button of RUISSkeletonController
component, which is outlined by the yellow rectangle.

If your avatar’s rig has vertices attached to the root Transform, then link that Transform both to
“Target Root” and “Pelvis” in RUISSkeletonController. If you intend to use some form of finger
tracking (for example when enabling RUISSkeletonController’s “Fist Clench Animation” option
with Kinect v2), then make sure that your avatar rig’s finger joint gameobjects all include the
substring “finger” or “Finger” in their name. In case you are using a mocap system with finger
tracking, you should note that Finger Targets are not assigned in the RUIS avatar prefabs. With
MecanimBlendedCharacter prefab you can click the “Obtain Targets from Animator” button, but
with other prefabs you need to drag and drop the transforms manually. This will be fixed for the
next RUIS version. You also need to disable the “Fist Clench Animation” option.

If you are using MecanimBlendedCharacter prefab and want to replace its 3D model with your
own avatar model, there are some considerations to make: firstly, see this guide to make sure
that you maintain all the correct scripts and links between them in the gameobjects of
MecanimBlendedCharacter. Secondly, you need to add Collider components to the avatar.
Thirdly, if you are not using Kinect to animate your character, then you might also need to adjust
the Y-coordinate of the StabilizingCollider gameobject’s Transform.

https://forum.ruisystem.net/forum/main-category/main-forum/370-replace-the-original-3d-model?p=372#post372

Controlling an avatar with a mocap system

This section describes how to use an arbitrary full-body motion capture system to control your
avatars. You may skip the whole section if you are using Kinect v1 or v2. Read this section
carefully if you are using Perception Neuron, Xsens, OptiTrack, Vicon etc.

Below cropped screenshot of Unity Editor presents an example of using OptiTrack motion
capture system to animate avatars in real-time with RUIS. First, you need to import the Unity
plugin of your mocap system into your project. Then create gameobjects for each tracked body
joint, whose Transforms will be updated with the world position and rotation of the tracked joints.

In this example the joint pose updating is achieved via the OptitrackRigidBody script, that comes
with the MotiveToUnity plugin. In the case of OptiTrack, stream the skeleton as individual rigid
body joints instead of streaming the skeleton data format, because the joint position data is not
used in the OptiTrack plugin’s own example scene, where the whole skeleton object is
streamed. When using OptiTrack you should also write a script that finds out the streamed rigid
body joint ID numbers and assigns them to all the OptitrackRigidBody components upon playing
the scene. Whenever you stream mocap data from another PC to your application, remember
to allow Unity Editor / application executable through firewall (both UDP and TCP).

Your avatar gameobject has to have the RUISSkeletonController script. At first use the
ConstructorSkeleton prefab as a ready made example, and make sure that your scene also
includes the RUIS prefab that contains the InputManager and DisplayManager. Please note that
there is no “AvatarExample” scene (as seen on the image) within the RUIS project. You can use
for example the MinimalScene example as a starting point for your avatar experiments in RUIS.

When using other motion capture systems besides Kinect, be sure to set the “Body Tracking
Device” property to “Generic Motion Tracker” in RUISSkeletonController. Also disable the “Filter
Rotations” option, or adjust the “Updates Per Second” property to match the mocap system
update rate if you absolutely need rotation filtering. Note the two settings pointed by the
magenta arrows, which should be enabled when using a IMU mocap suit (e.g. Perception
Neuron, Xsens) together with a head-mounted display.

Scroll down in the Inspector to see the “Custom Mocap Source Transforms” -section of
RUISSkeletonController, which is only visible if “Body Tracking Device” is set to “Generic Motion
Tracker”. Give RUISSkeletonController access to the aforementioned gameobjects (that will be
updated with the world position and rotation of the mocap tracked joints) by linking their parent
to the “Parent Transform” field, and clicking the “Obtain Sources by Name” button (indicated by
yellow rectangle). Be sure to double-check that the results of this automatic linking process are
correct. Alternatively, you can drag the individual gameobjects into the corresponding “Custom
Mocap Source Transforms” fields, as exemplified by the magenta arrow in the below image.
Some of the fields can be left to “None”, but we recommend that you link all available mocap
tracked joints; at least Source Root, Pelvis, Shoulders, Elbows, Hands, Hips, Knees, and Feet.

The avatar should make a T-pose in Play Mode, when the mocap tracked joint gameobjects all
have an identity world rotation (0, 0, 0) and their world positions correspond to that of a T-pose.
Your mocap system plugin might not input joint poses in that format. In that case the joint
gameobjects should have child gameobjects with a rotation offset that fulfills the T-pose
requirement, when the child gameobjects are linked to the “Custom Mocap Source Transforms”
fields instead of their parents. This method can also be used to create joint position offsets.

Note the “Coordinate Frame [and Conversion]” property outlined by the magenta rectangle. That
setting associates a specific coordinate frame (“Custom_1”) with the avatar and its mocap
system, which allows applying any coordinate alignment and conversions that are required to
make the avatar function properly in Unity and together with other devices supported by RUIS. If
you are using Perception Neuron, leave this property to “None”.

https://www.ssbwiki.com/T-pose

To access the coordinate conversion settings, you should enable the associated “device”
(Custom 1) from the RUISInputManager component, which is located at the InputManager
gameobject (parented under RUIS gameobject). You only need to adjust these settings if the
avatar ends up being animated wrong, for example if the joints point at different directions in
Unity than in the motion capture software (e.g. Axis Neuron, if you are using Perception
Neuron).

The below example shows what “Input Conversion” settings are needed to make avatars work
properly with joint data that is streamed from OptiTrack’s old Motive 1.0 software from early
2013. Basically the input conversion is used to make the streamed motion capture joint position
and rotation format to conform with Unity’s left-handed coordinate system. You can adjust the
“Input Conversion” settings in Play Mode to see their effects in real-time.

Using a VR headset with a mocap system

If you want to implement first-person avatars by using a VR headset together with a separate,
full-body mocap system, then it is best to utilize the VR headset’s tracking system for moving
the virtual cameras. That will minimize motion-to-photon latency and allow time-warp
optimizations. Consequently, you will then be operating two motion tracking systems
simultaneously. If the mocap system is optical (e.g. Kinect, OptiTrack, Vicon), then in most
cases you want to align the coordinate frame of the mocap system with the coordinate frame of
the VR headset’s tracking system. An alternative to this alignment is to enable the “HMD Drags
Body” and “IMU Yaw Correct” options in RUISSkeletonController, which only works if the mocap
system accurately tracks head yaw rotation, ruling out Kinect v1 and v2. This alternative
approach has a side effect of making the avatar “slide” if there is noticeable latency between the
mocap and the VR headset tracking.

When using a VR headset, enable the “Update When Offscreen” option of the avatar’s
SkinnedMeshRenderer component, for avoiding mesh blinking in first person view. In RUIS
1.21 this option is disabled by default in all RUIS avatar prefabs (will be fixed for next version).

Aligning coordinate frames happens via a calibration process, which is not required when using
a IMU mocap suit (e.g. Perception Neuron, Xsens) together with the VR headset. The
calibration occurs in calibration.scene that comes with RUIS. When using some other mocap
system than Kinect v1 or v2, then you need to edit the scene so that the “Custom 1 Pose”
gameobject’s world position and rotation will have their values from a joint that will be streamed
from your mocap system. If necessary, also edit the “Input Conversion” settings of the
RUISInputManager component that is located at InputManager gameobject (parented under
RUIS gameobject of the scene).

You can align the coordinate frames of two input devices by running the calibration.scene in
Unity Editor; in this case just make sure that you have the intended two devices selected in the
RUISCoordinateCalibration component, which is located at the Calibration gameobject of the
scene. Alternatively, you can initiate the calibration process via RUIS menu, which can be
accessed in Play Mode by pressing the ESC key in any of the RUIS example scenes. Use a
mouse to click the green button under the “Device Calibration” label, which opens up a
drop-down menu of devices that can be aligned; the available menu items depend on the
enabled devices and the detected VR headset.

Once you have selected the device pair from the drop-down menu, click “Calibrate Device(s)”
button to start the process for aligning their coordinate frames. See section “Shared Coordinate
Frame for Multiple Tracking Devices” for details on the process.

Avatar customization and automatic scaling

RUISSkeletonController allows the customization (affecting looks) of arbitrary avatars via
relative offsets in translation, rotation, and scaling of individual body segments. These properties
can be animated via scripting, which facilitates the creation of interactive effects, for-example
power-ups that make the avatar’s arms bigger etc.

Below image shows the most important settings of the RUISSkeletonController component. If
“Keep PlayMode Changes” (yellow rectangle) option is enabled, majority the properties are
highlighted with a light yellow background during Play Mode: the values of these highlighted
properties will retain their values when exiting Play Mode. This is useful because you need to be
in Play Mode to see the effects of the scaling and offset properties, and the default Unity Editor
behaviour is to reset all changes made to properties when exiting Play Mode.

The properties within the blue rectangle are the most significant avatar scaling options. By
modifying them you can adjust body segment thickness and scaling granularity: “Scale Body”
(scales whole avatar, required by all other scaling options), “Torso Segments” (scales individual
torso segments), “Scale Limbs” (scales limb segments uniformly to affect their length), and
“Length Only” (scales limbs non-uniformly to preserve their thickness). Limbs refer to forearms,
upper arms, thighs, and shins. Enabling “Scale Body” and “Scale Limbs” options matches
the avatar’s proportions with those of the user (lengthwise).

The magenta rectangle surrounds the most important “Scale Adjust” and (translation) “Offset”
properties that affect the looks of the avatar’s torso and head.

Besides affecting looks, correcting retargeting issues is the secondary function of avatar
body segment settings that affect translation, rotation, and scale. Such issues arise if an
avatar and the utilized mocap system use different location and orientation conventions for
corresponding joints. For example, mocap systems often have a specific ratio between spine
bone (pelvis, chest, neck, head) lengths, which vary little between users of different height. The
corresponding ratios can be vastly different for various 3D model rigs that are used as avatars.

If “Scale Body” and “Torso Segments” options are enabled, then the avatar’s spine bones will be
scaled so that their lengths correspond to the input from the mocap system. This can lead to
peculiar body scaling (e.g. neck gets too thin or thick), if the spine bone ratios are different
between the avatar and the input from the mocap system. This can be corrected by adjusting
the “Scale Adjust” or (translation) “Offset” properties of the affected bone. In similar instances
with mismatched bone ratios, the avatar’s torso can look peculiar even if “Torso Segments” is
disabled, in case any of the individual body segment mocap options (e.g. “Chest Mocap”) is
enabled under “Update Joint Positions”. This can also be addressed by adjusting the “Scale
Adjust” or “Offset” properties. Each time you switch to a new avatar or to a different mocap
system, you might need to modify the avatar’s “Scale Adjust” or “Offset” properties.

The “Forearm Length Adjust” and “Shin Length Adjust” can be used to shorten or lengthen
forearms and shins. This is particularly useful when the relative location of hand or foot pivot
differs between the mocap system and the avatar’s rig. For example, the default Constructor
avatar (the guy in the image with red overalls) has its foot pivot slightly above the ankle. You can
verify this via selecting the corresponding gameobject by double-clicking the “Left Foot” field in
“Avatar Target Transforms” section, and by having the “Pivot” option of “Transform Gizmo”
chosen in Unity Toolbar. If you animate the Constructor avatar with a mocap system, whose
input feet positions are closer to the user’s heel bone than ankle, then the avatar’s virtual feet
will end up below the virtual floor plane, unless you set the “Shin Length Adjust” value to
somewhere below 1.

The properties in “Local Rotation Offsets” rarely require any other values than the default
identity rotation (0, 0, 0). The most common use case is adjusting “Feet (Rot)” on occasions
where the avatar rig and the utilized mocap system use different rotation angles for the same
feet pose. For example, consider a case where the chosen mocap system gives a 90-degree
angle between shin and foot if the user is making a T-pose, while utilizing an avatar whose foot
joint has a clearly oblique angle in the default T-pose (when not animated by RUIS).

Please note that the effects of RUISSkeletonController’s scaling and offset properties can be
seen during Play Mode, when the “Body Tracking Device” property is set to Kinect (1 or 2), even
if no Kinect is connected or enabled in RUISInputManager component (translation offsets have
no effect in this case). However, the exact appearance of the avatar can only be verified when
the selected “Body Tracking Device” is connected and enabled.

In the case of “Generic Motion Tracker”, no mocap system is needed if the “Custom Mocap
Source Transforms” properties are linked to gameobjects, whose world positions form a T-pose
and each has an identity world rotation. An example of this is seen in the above image, where
the linked gameobjects each have a TextMesh component (e.g. Head, Neck, Chest, …). This
specific pose is not really required, it just happens to be the easiest one to setup that has
congruent positions and rotations.

Enabling the “Length Only” option for scaling works only with certain avatar rigs, where
there exists a single local axis (X, Y, or Z), which points the bone length direction consistently
among all the limb joint Transforms (shoulders, elbows, hips, and knees). Set “Bone Length
Axis” to that axis. You can discover the correct axis by selecting individual limb joint Transforms
of the rig while having the “Pivot” option of “Transform Gizmo” and “Move Tool” chosen in Unity
Toolbar. This makes the “Move Tool” to indicate localScale axes of the selected joint Transform.
The correct axis is the one that is aligned with the bone length direction. In some avatar rigs that
alignment is not consistent among all the limb joints (e.g. many Mixamo rigs), in which case you
should disable “Length Only”. In the next RUIS version you will be able to set “Bone Length
Axis” separately for arms and legs, covering Mixamo rigs and others with inconsistent bone
length axis directions.

The default “Max Scale Rate” of 0.5 (units per second) is too high for Kinect and other mocap
systems that continuously estimate user’s bone lengths. This default was chosen because “Max
Scale Rate” also limits how quickly any changes to “Thickness” and “Scale Adjust” properties
are manifested in the avatar, and smaller values would have made the changes less apparent.
In a future version these properties will not be limited by “Max Scale Rate”, and the default will
be set to 0.01.

Finally, remember that tooltips provide additional information about the properties of
RUISSkeletonController. Tooltips appear when hovering the mouse cursor over the property
name in Inspector. Tooltips do not show up during Play Mode.

Kinect controlled full-body avatars

If you have successfully installed the drivers for Kinect v1 or v2 and want to use it in your RUIS
for Unity scene, make sure to tick the “Kinect Enabled” / “Kinect 2 Enabled” option in
InputManager gameobject (parented under RUIS gameobject).

Place the Kinect so that it can see you and the floor. The avatar’s pose and limbs’ length is
tracked by Kinect. With Kinect v1 you need to stand in front of the Kinect during gameplay, while
Kinect v2 can also track you while you are sitting on a chair.

If you have “Floor Detection On Scene Start” enabled in RUISInputManager, or if you have
calibrated Kinect using RUIS, you can take advantage of the following useful features:

1. Set Kinect Origin To Floor -feature can be turned on from the InputManager
gameobject. With this option enabled the Kinect-controlled avatars will always have their
feet on the XZ-plane (provided that the avatar gameobjects have model-dependent,
correct Y-offsets), no matter what height your Kinect is placed on.

2. You can tilt your Kinect downwards, and RUIS will use a corrected coordinate system
where the XZ-plane is aligned along the floor, preventing Kinect avatars from being
skewed in Unity.

Kinect avatars and a head-mounted display

You might need extension cords with Oculus Rift. You need to calibrate the OpenVR and
Kinect coordinate systems by displaying the RUIS menu (ESC) in run-time, selecting “Kinect -
OpenVR” from the Device Calibration drop-down menu, and clicking the “Calibrate Device(s)”
-button.

Avatar with head-mounted display but without mocap

Without a mocap system like Kinect, using RUIS avatars have only a limited use. Best case
scenario would be to use an external inverse kinematics library to infer the avatar pose from the
VR headset and controller poses, and use that as a custom mocap system input. This would
make sense if you could calibrate or manually input the users’ body proportions, and the inverse
kinematics library would not support scaling of avatar’s individual body segments.

The avatar position follows the head-mounted display’s location if “HMD Drags Body” is enabled
in RUISSkeletonController. You should also enable the “HMD Rotates Head” option. Make sure
that the “Master Coordinate System Sensor” is set to OpenVR or UnityXR in the InputManager
gameobject that is parented under RUIS gameobject. If you use mouse and keyboard for
controlling the MecanimBlendedCharacter locomotion, see “Avatar Controls” section below.

In current RUIS version you also need to set “Body Tracking Device” property to “Generic
Motion Tracker” in RUISSkeletonController, and “Pelvis Source” to RUIS or some other
gameobject whose position and rotation is constant (other “Custom Mocap Source Transforms”
can be left to “None”). Finally, adjust RUISSkeletonController’s “Pelvis Offset” during Play Mode
until the avatar head position is co-located with the virtual camera.

Avatars with Locomotion, Physics, and Animation
RUIS features MecanimBlendedCharacter prefab, which is a feature-rich character controller for
applications with first- or third-person view. The prefab contains a human 3D model that is
animated with Kinect v1, Kinect v2, or a “Generic Motion Tracker” (any mocap system). You can
substitute the default 3D model with your own.

MecanimBlendedCharacter prefab comes with so called “full locomotion” or analog stick
walking. Whenever the player is moving the avatar either with a keyboard, gamepad, or
OpenVR (e.g. Vive) controller, the avatar’s leg poses will blend from mocap tracking input into
Mecanim walking animation. You can use your own Mecanim animation graph and utilize
RUIS features to write scripts that blend Mecanim animation with mocap tracking in
real-time (currently this blending does not work with “Length Only” limb scaling). See
KinectTwoPlayers or OpenVrExample at \RUISunity\Assets\RUIS\Examples\ and modify the
MecanimBlendedCharacter gameobjects to get started.

By default the MecanimBlendedCharacter is affected by gravity, so you should place it on a
static Collider, otherwise it will keep falling downwards in Play Mode. When the user is in control
of the MecanimBlendedCharacter via a mocap system, they can climb on rigidbodies and push
or hit dynamic rigid bodies. MecanimBlendedCharacter contains StabilizingCollider gameobject,
which is attached to the avatar’s pivot (either pelvis or head). It serves two functions when the
avatar is affected by gravity: 1. If the mocap tracked user jumps, then the StabilizingCollider‘s
height increases accordingly (albeit in a highly filtered manner), so that the jump is reflected in
avatar’s vertical position. 2. In first person VR applications, StabilizingCollider should be the only
contact point to static floor Colliders, so that the VR camera is as stable as possible. If the
mocap tracked feet interact with a static floor Collider by pushing the avatar upwards, this
propagates the feet tracking jitter into MecanimBlendedCharacter‘s VR camera.

MecanimBlendedCharacter prefab’s scripts automatically select the most suitable
head-mounted display tracking between OpenVR tracking (e.g. Lighthouse base stations),
Kinect 1, or Kinect 2. The head tracking device is decided at runtime depending on which
devices are enabled in RUIS’ InputManager or otherwise detected. Note: As of RUIS 1.10, the
automatic head position tracker selection is mostly relevant for Oculus Rift DK1 and similar
devices, which have not been tested with RUIS 1.21. If “Virtual Reality Supported” option in
enabled in Unity’s “Player settings” and a head-mounted display is detected, then the
OpenVRHeadTracker is selected upon startup. If that is not the case and all the input devices
are disabled in RUIS’ InputManager, thenWithoutHeadTracking is selected.

You can make an application with a third-person view using MecanimBlendedCharacter if you
remove its RUISHeadTrackerAssigner component and the HeadTrackers gameobject parented
under it, and create a new RUISCamera that follows the MecanimBlendedCharacter.

The MecanimBlendedCharacter has OpenVRWands child gameobject, which contains 3D
Wands that can grab and manipulate objects. You can delete these Wands or modify them. The
JumpGestureRecognizer child gameobject contains scripts that make the character jump if
Kinect is enabled and detects the player jumping. The recognition is far from perfect however,
and the functionality of JumpGestureRecognizer is disabled by default.

A more simplified version of MecanimBlendedCharacter is ControllableCharacter prefab, which
can be animated by mocap systems and has the same features, but does not blend Mecanim
animation.

Display Manager
You can have your Unity application render 3D graphics on any number of mono and stereo
displays, together with one head-mounted display, when you use RUIS and run your
application in windowed mode. You need to have your displays arranged sideways in your
operating system’s display settings, because RUIS automatically creates a game window where
all the viewports are side-by-side. When you intend to use multiple displays, change the
“D3D9/11 Fullscreen Mode” settings to “Fullscreen Window” from Unity’s Standalone
Player Options.

RUIS display configuration can be edited through the DisplayManager gameobject that is
parented under RUIS gameobject. The RUISDisplayManager script shows an overview of your
current display setup, whose individual displays are parented under the DisplayManager
gameobject. When adding new displays in RUIS, keep in mind that each RUISDisplay needs
to have a RUISCamera gameobject linked to it when you want something to be rendered on
those displays. If you have a RUISHeadTrackerAssigner script (comes with the
MecanimBlendedCharacter prefab) in your scene, it will attempt to link one of its RUISCameras
to any RUISDisplay without an existing link.

If you want to simultaneously render to a head-mounted display and other displays, then
you should disable the “Show HMD View” option in RUISDisplayManager.

A basic example of using RUISDisplayManager to create a multi-display setup without
head-mounted displays is presented in the DisplayManagerExample, which you can find at
\RUISunity\Assets\RUIS\Examples\ folder. Please note that currently RUISDisplayManager
does NOT utilize Unity’s recently added multi-display capabilities. We will explore that prospect
in the future.

RUISCamera

Each scene in a RUIS project should be rendered using a RUISCamera, a prefab that can be
found in \RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\ folder. The
”MecanimBlendedCharacter”, ”RUIS OpenVR Rig”, and “ControllableCharacter” prefabs also
come equipped with RUISCameras. If the “Virtual Reality Supported” option is enabled,
then RUISCamera will by default render to a head-mounted display. If the “Show HMD
View” is also enabled in RUISDisplayManager, the default RUISCameras will also render
on the game window, possibly covering other rendered viewports. This will occur even if
the RUISCameras are not linked to RUISDisplays when VR is enabled in Unity, because
we wanted to keep layered rendering simple for head-mounted displays. You can enforce
RUISCamera to always act as a non-head-mounted display camera by setting the “Target
Eye” to “None (Main Display)” in the Camera component of RUISCamera->CenterCamera.
Please note that the aforementioned property is hidden by Unity if “Virtual Reality Supported”
option is disabled.

RUISCamera also contains LeftCamera and RightCamera child gameobjects, each with Camera
components. They are only used for stereo 3D displays, when the RUISCamera is linked to a
RUISDisplay that has the “Split Stereo Display” option enabled. For stereo 3D displays,
side-by-side and top-and-bottom modes are supported.

RUISCamera component has only two visible properties in the Unity Inspector: Horizontal and
Vertical FOV. They only have effect if the RUISCamera is acting as a non-head-mounted display
camera, rendering on a RUISDisplay that has the “Head Tracked CAVE Display” option
disabled.

https://docs.unity3d.com/Manual/MultiDisplay.html

3D UI Prefabs for Selection and Manipulation
Note: Introduced in 2016, VRTK now offers far better 3D UI interaction building blocks than
come with RUIS. I have not yet tested how compatible they are with RUIS.

RUIS for Unity can be used to easily create a custom 3D user interfaces with custom selection
and manipulation schemes by the use of so called Wand prefabs. Currently supported wands
(input devices) are: MouseWand, OpenVRWands, and SkeletonWand (Kinect). These prefabs
are found at \RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\Input Methods\. To
see how to use these prefabs, check out BowlingAlley (OpenVRWands), MinimalScene
(MouseWand), OpenVrExample (OpenVRWands), and KinectTwoPlayers (SkeletonWand) at
\RUISunity\Assets\RUIS\Examples\ .

SkeletonWand is different from the other Wands because selection events are not activated via
buttons, but using gestures. Currently the only available selection gestures are hold and fist
gestures (latter is just for Kinect v2). Selection with the hold gesture works by holding the
SkeletonWand (your hand) still for 2 seconds while pointing at the object to be selected.
Release (deselect) works the same way. The fist gesture works if infrared features of Kinect v2
work properly, and this depends on your GPU drivers. You can test that by running the Kinect v2
Infrared Basics demo from SDK Browser v2.0, which should display an infrared image. For
Nvidia GPUs, we have tested that the infrared features of Kinect v2 work at least with GeForce
340.52 drivers.

https://vrtoolkit.readme.io/

If you do not have Kinect or OpenVR controllers, then use MouseWand prefab that relies on 2D
mouse for object manipulation purposes. When your scene is playing, the above mentioned
Wands are used to manipulate gameobjects that have a RUISSelectable script, Mesh
Renderer, Rigidbody, and Collider components. See the Crate gameobjects in any of our
example scenes. The selection ray of a Wand is checked against the Collider components (you
can have several of them in a hierarchy under one object) of a gameobject to see whether it can
be selected (triggered with a button or a gesture in case of Kinect) and manipulated by the
Wand.

In RUIS for Unity the 3D coordinate system unit is meters, which is reflected in the position
values of the Wands, Kinect-controlled avatars, and gameobjets with RUISTracker component.
You can translate, rotate, and scale the coordinate systems of Wands by parenting them
under an empty gameobject and applying the transformations on it.

Please note that in many 3D user interfaces it makes sense to disable gravity and other physical
effects of the manipulated objects; For example, in a CAD interface you don’t want geometric
shapes to fall down after moving them.

In the below figure’s RUISOpenVrWand component, “Selection Button” property specifies the
button that is used for selecting gameobjects with RUISSelectable script. The “Selection Layer”
is the Layer onto which the selected object will be transferred for the duration of the selection.
You can alter the object manipulation scheme by changing the “Position Grab” and “Rotation
Grab” options.

Shared Coordinate Frame for Multiple Tracking Devices
If you have multiple motion tracking devices that you want use simultaneously with a shared
coordinate system, then choose one of the devices as the “Master Coordinate System
Sensor” and enable the “Use Master Coordinate System” toggle from the
RUISCoordinateSystem component (see below image). The RUISCoordinateSystem
component is located in the InputManager gameobject, which is parented under RUIS
gameobject. Lets say that you chose OpenVR as the “Master Coordinate System Sensor”, and
you want to use it together with Kinect_2 and Custom_1 (e.g. OptiTrack). Then you would need
to calibrate two device pairs: Kinect_2–OpenVR and Custom_1–OpenVR. The following section
will tell you how to do that.

If you are using SteamVR with head-mounted displays, then it is best to set the “Master
Coordinate System Sensor” to “OpenVR”. This is to avoid a bug in SteamVR that causes
peculiar extra translations to head-tracked positions when non-uniform scale is applied by
RUISTracker to RUISCamera when attempting to make the OpenVR coordinate system to
conform the other device’s coordinate system. RUISTracker component acts differently from its
normal behaviour, if its “Position Tracker” property is set to “Open VR”: instead of applying
OpenVR position input to the gameobject with the component, it only applies a constant
translation, rotation, and scale that approximates the transformation from OpenVR coordinate
frame to “Master Coordinate System Sensor” frame.

Calibrating two different motion trackers to use the same coordinate system

Calibration is needed for using two or more different motion trackers (e.g. Kinect and OpenVR
controllers) together in the same coordinate system, and also for aligning Kinect v1 or Kinect
v2 coordinate system with the room floor. Calibration needs to be performed only once, but you
have to do it again if you move either one of the calibrated sensors. Results of the calibration (a
3x3 transformation matrix and a translation vector) are printed in Unity’s output log and are also
saved in an XML-file at \RUISunity\calibration.xml.

You can calibrate devices by running any of our example scenes in Unity Editor, pressing ESC
key to show RUIS menu, enabling those devices whose drivers you have successfully installed,
selecting the device(s) that you want to calibrate, e.g. “Kinect 2 - OpenVR (controller)”, from the
Device Calibration drop-down menu, and clicking the “Calibrate Device(s)” -button. This will
start the interactive calibration process by loading
\RUISunity\Assets\RUIS\Scenes\calibration.unity, which we will describe below in more detail for
Kinect 2 and OpenVR controller. RUIS menu can only be interacted with by using a mouse.

All head-mounted displays can be calibrated by choosing the “[OtherDeviceName] -
OpenVR (HMD)” option in the Device Calibration drop-down menu. This option has
erroneously the same name even if you are calibrating Oculus Rift without using SteamVR, and
the results will be saved to “OpenVR-[OtherDeviceName]” element in the calibration.xml file. If
you have Kinect 2 we recommend using “Kinect 2 - OpenVR (controller)” calibration
method, because it is currently the only process that allows interactive finetuning of the
calibration result.

When using Kinect or other tracking system with Vive, it is important to keep in mind that Vive’s
Lighthouse-tracking coordinate origin can drift, based on the stability of your power source.
Voltage fluctuations in your mains power can affect the angular velocity of the basestation
motor, potentially leading into several inches of displacement in the coordinate origin. All that
can be avoided by having stable mains power or using an "online" or "double-conversion"
uninterruptible power supply (UPS).

https://en.wikipedia.org/wiki/Uninterruptible_power_supply#Online.2Fdouble-conversion
https://en.wikipedia.org/wiki/Uninterruptible_power_supply#Online.2Fdouble-conversion

Example: Kinect 2 and OpenVR controller calibration

Once the calibration scene has loaded, hold OpenVR controller (e.g. Vive controller) in your
right hand, and step in the front of the Kinect. The interactive calibration process instructs you to
press the trigger button of the OpenVR controller to start the calibration. During the calibration
process, keep the OpenVR controller in your right hand and move it slowly so that there is a
clear line of sight between it and both the Kinect and OpenVR sensors (e.g. Lighthouse base
stations).

When the calibration is complete, you will see the results. After calibrating Kinect 2 with
OpenVR controllers, you can put on the OpenVR head-mounted display to see the avatar’s
first-person view. At that point you can finetune the translation part of the calibration by
pressing down the trackpad button of the OpenVR controller (analog stick button in Oculus
Touch) and moving the controller into the direction where you want to modify the translation.
For an example of how to use Kinect and OpenVR controllers (e.g. Vive) together, please see
the BowlingAlley or OpenVrExample at \RUISunity\Assets\RUIS\Examples\

If you are holding a OpenVR controller in your hand, the Kinect-controlled avatar’s hand and the
OpenVR controller’s virtual representation do not alway appear exactly in the same position
because no calibration gives perfect results and Kinect is less accurate than OpenVR
controllers. Snapping of hand locations to handheld OpenVR controller locations might be
added in a future release of RUIS for Unity.

When you are calibrating Kinect v1 or v2 (just themselves or with other devices), it is important
that Kinect sees the floor properly (see the red Kinect depth view in the above screenshot for
an example), so that the Kinect can detect its distance from the floor and its orientation with
regards to the floor. That data is used to align the Kinect coordinate system’s XZ-plane with floor
plane.

Example Scenes
Examples of using RUIS for Unity can be found at \RUISunity\Assets\RUIS\Examples\
Following two points are important in BowlingAlley, KinectTwoPlayers, and OpenVrExample
scenes:

1. Choose the InputManager gameobject (parented under RUIS gameobject) and enable
those input devices that you have connected to your computer. Head-mounted
displays and OpenVR controllers are automatically detected and you don’t need to
enable those.

2. If you have two or more input devices, select one of them as the “Master Coordinate
System Sensor” from RUISCoordinateSystem component (select OpenVR if you are
using SteamVR), start the scene, press ESC to open the RUIS menu, choose one of the
device pairs from “Device Calibration”, and click “Calibrate Device(s)”. After the
calibration is completed, repeat the process for the remaining device pairs that contain
the “Master Coordinate System Sensor” (you can skip “Kinect floor data” calibration for
Kinect v1 and v2).

OpenVrExample

This example presents MecanimBlendedCharacter gameobject, which is a versatile beast. In
this demo Kinect v1 or Kinect v2 animate the player avatar, while head-mounted displays offer a
first-person view from the eyes of the avatar. Additionally OpenVR controllers can be used to
interact with objects. When the scene is running, you can control the constructor character with
keyboard, gamepad, or OpenVR controller.

MinimalScene

This scene is a good starting point for a blank RUIS scene. You can delete the Floor, Crate,
Directional light, and MouseWand gameobjects. If you want to change this scene to a
minimal scene with OpenVR (e.g. Vive) controllers, then replace the RUISCamera
gameobject with the ”RUIS OpenVR Rig” prefab (at
\RUISunity\Assets\RUIS\Resources\RUIS\Prefabs\Main RUIS\). The ”RUIS OpenVR Rig” prefab
is RUIS’ equivalent for SteamVR’s [CameraRig] prefab.

KinectTwoPlayers

This example demonstrates how you can create a multiuser Kinect application in RUIS. The
Kinect avatars are equipped with Collider components so that they can push objects around.
Also note how the Kinect-controlled SkeletonWands can be used for object manipulation.

BowlingAlley

Bowling with OpenVR controller (e.g. Vive controller): Use trigger button to grab the bowling ball
and release it on your throw. Menu-button resets the bowling ball position, and trackpad-button
places the bowling pins. Kinect is used to control a simple mannequin avatar (Mannequin
gameobject). Note how Mannequin’s body parts are all parented in a flat fashion and that the
“Hierarchical Model” option is unchecked in its RUISSkeletonController script, as opposed to the
body parts of MecanimBlendedCharacter gameobject in OpenVrExample scenes. The
Transform hierarchy of both avatar prefabs are depicted in the below illustration.

The Mannequin prefab and its flat, one-level deep bone setup is so rare, that not all the avatar
customization options of RUISSkeletonController are functional when “Hierarchical Model” is
disabled. Also note that the Mannequin prefab does not work well as an avatar viewed from
first-person. We recommend that you utilize other prefabs (ConstructorSkeleton,
ConstructorSkeletonWithColliders, ControllableCharacter, MecanimBlendedCharacter), when
working with avatars.

DisplayManagerExample

Run the scene to see how settings at DisplayManager gameobject affect the rendered
multi-display output. Additionally you can use mouse, space-key, and WASD-keys to control a
simple first-person movement. A MouseWand prefab is present, so you can use left mouse
button to grab cube objects.

CaveExample

This example with three RUISDisplays illustrates how RUIS can be used for CAVE systems
(with head tracking and all). You can apply keystone correction for projector-based display
walls by accessing the RUIS menu with ESC-key when your scene is running, clicking “Display
Management”, and dragging the viewport corners. In this demo you can press the IJKLUO-keys
on the keyboard to simulate head-tracking, which shows you how the asymmetric view frustums
get distorted as the simulated head moves. Alternatively, you can change the “Head Tracker”
gameobject to get its position from some other source, like a Vive controller, Kinect head
joint, etc. For locomotion in the CAVE environment, just apply translation and rotation to the
“Cameras” gameobject under which all the RUISCameras of the scene are. You can also add
more RUISDisplays into the scene by using the “Add Display” button in RUISDisplayManager to
match your own physical CAVE setup. Remember to add a new RUISCamera (with “Target
Eye” set to “None (Main Display)” if VR is enabled) and enable the “Head Tracked CAVE
Display” for each new RUISDisplay, and configure the physical display parameters (Display
Width, Height, Center Position, Normal Vector, Up Vector) to correspond the physical
dimensions and tracking coordinates of your CAVE setup. Please note that with RUIS it is
possible create an application that simultaneously renders to a head-mounted display
and a CAVE setup, by configuring the RUISDisplayManager and RUISCameras. Alternatively,
the application could switch between CAVE and head-mounted rendering, depending on
detected devices (you need your own scripting to switch between RUISCameras in this case).

Avatar Controls
ControllableCharacter and MecanimBlendedCharacter

Keyboard Gamepad

Move forward / backward W / S Left analog stick

Strafe left / right A / D Left analog stick

Turn left / right Q / E Right analog stick

Jump Space Joystick button 1, 5

Run Shift Joystick button 0, 4, 7

OpenVR controller

Move forward / backward Left controller trackpad

Strafe left / right Left controller trackpad

Turn left / right Right controller trackpad

Jump Right Controller Menu Button

Run Left Controller Menu Button

Grab object Trigger button

Troubleshooting
Kinect v1 issues

● OpenNI (and Windows SDK) often have problems tracking the user properly. This is
manifested as limbs jumping around randomly, legs facing backwards, and other poor
tracking results. It is also very common that the lengths of different body parts are
poorly detected: arms are either too short or long, or legs are too big and go
underground. Keep enough distance to Kinect (between 2 - 4 meters) so that it can see
your whole body.

● For an example of how much floor area the Kinect should be able to perceive, see the
screenshot from “Example: Kinect 2 and OpenVR controller calibration” section.

● On some computers it is sometimes necessary to unplug Kinect’s USB connector and
plug it into a different USB port to get OpenNI examples working.

● Kinect v1 floor detection works erratically on some systems. Be sure that nothing
blocks Kinect’s view and that it can see enough floor area when starting a new scene or
calibration process. If Kinect v1 floor detection doesn’t work at all, then you should
disable “Floor Detection On Scene Start” for Kinect v1. In this case the
RUISCoordinateSystem script’s “Set Kinect Origin To Floor” toggle works only if you
manually edit the ‘kinectDistanceFromFloor’ value from calibration.xml. Such editing
needs to be applied AFTER running Kinect calibration, because it resets the distance
value. Your Kinect controlled characters might also appear leaning forward or backward,
if your sensor is tilted downwards or upwards.

Kinect for Windows (Kinect v1)

Microsoft released Kinect for Windows v1 and Kinect v1 SDK, but they are not compatible with
OpenNI. The kinect-mssdk-openni-bridge is an experimental module that connects Kinect SDK
to OpenNI and allows people with Kinect for Windows to use OpenNI applications. This bridge
might get RUIS to work with Kinect for Windows but there are no guarantees:
https://code.google.com/p/kinect-mssdk-openni-bridge/

Firewall settings for mocap systems

It is often necessary to adjust your computer’s firewall settings, when you use RUIS together
with a mocap system Unity plugin that streams mocap tracking data from the mocap computer.
Check that the mocap and application (Unity) computers are connected to the same network,
and that they both can successfully ping each other. You might need to allow both outgoing and
incoming TCP and UDP data.

https://code.google.com/p/kinect-mssdk-openni-bridge/

Layers, Script Execution Order, and creating a UnityPackage of RUIS

If you create a UnityPackage of RUIS with the intention of importing RUIS to your existing Unity
project, you need to create the layers displayed in the below left image (with the same indices
and names):

You also need to set up the Script Execution Order presented in above right image. Nearly half
of the scripts come from NGUI, which we use for RUIS menu.

Safety Warning
Wearing head-mounted-displays while standing up, moving, walking, or jumping is dangerous to
your health and potentially deadly. Author of this software recommends you to avoid the
aforementioned actions, and if you choose to perform them anyway, you do it at your own risk.
The author of this software cannot be held responsible in any way for any consequences.

Software License Limitation of Liabilities
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Licensing
RUIS is distributed under the LGPL Version 3 license for non-commercial use. If you intend to
use RUIS for commercial work, please contact us first (tmtakala@gmail.com).

